Simulations of thermophoretic microswimmers

Marisol Ripoll and Mingcheng Yang
Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, Germany

In the presence of a temperature gradient, a colloidal particle experiences a directional motion which can be oriented to the warm or to the cold areas depending on the colloid-solvent interactions $[1,2,3]$. This directed motion is known as thermophoresis, thermal diffusion, or Soret effect. Besides the colloidal drift, the temperature gradient also induces a flow of the surrounding solvent. This flow is responsible for example of the long-ranged hydrodynamic attraction between colloidal particles near a boundary wall, and it is the basic mechanism to fabricate new micromachines, like thermophoretic pumps [4]. Self-propelled motion can be induced for example in the cases of Janus or dimers colloidal particles with asymmetric properties [5,6]. In these cases, one half of the particle can be heated to a fixed temperature producing a radially symmetric temperature gradient. The thermophoretic properties of the other half produce then a propulsion against or towards the heated part, such that the asymmetric microparticle becomes a microswimmer. These self-propelled particles can have properties of puller, pushers or neutral swimmers. We will summarize recent investigations on these systems performed by means of a mesoscopic simulation technique known as multiparticle collision dynamics simulations (MPC) $[7,8]$.

1. S. Wiegand, J. Phys.: Condens. Matter, 16, R357, (2004).
2. R. Piazza and A. Parola, J. Phys.: Condens. Matter, 20, 153102, (2008).
3. D. Lüsebrink, M. Yang and M. Ripoll, J. Phys.: Condens. Matter, 24, 284132, (2012).
4. M. Yang and M. Ripoll, Soft Matter, 9, 4661, (2013).
5. H. R. Jiang, N. Yoshinaga and M. Sano, Phys. Rev. Lett., 105, 268302, (2010).
6. M. Yang and M. Ripoll, Phys. Rev. E, 84, 061401, (2011).
7. A. Malevanets and R. Kapral, J. Chem. Phys., 110, 8605, (1999).
8. D. Lüsebrink and M. Ripoll, J. Chem. Phys., 136, 084106, (2012).
